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Abstract

From the onset of cognitive revolution, the concept of mental imagery has
been given different, many times opposing, theoretical accounts. Mental
imagery appears to be a ubiquitous, yet wholly individual, easy to ex-
plain experience on the one hand, being hard to deal with scientifically
on the other hand. The focus of this research is on an enactive approach
to visuospatial mental imagery, inspired by Sima’s perceptual instantiation
theory. We designed a hybrid computational model, composed of a for-
ward model, an inverse model, both implemented as neural networks, and a
memory/controller module, that grounds simple mental concepts, such as a
triangle and a square, in perceptual actions, and is able to reimagine these
objects by performing the necessary perceptual actions in a simulated hu-
manoid robot. We tested the model on three tasks – salience-based object
recognition, imagination-based object recognition and object imagination –
and achieved very good results showing, as a proof of concept, that percep-
tual actions are a viable candidate for grounding the visuospatial mental
concepts as well as the credible substrate of visuospatial mental imagery.

Keywords: enaction, mental imagery, visuospatial cognition, saccades,
cognitive robotics

1. Introduction1

Mental imagery (MI) is a phenomenon that has been given multiple2

(many times opposing) theoretical accounts from the start of the cogni-3

tive revolution, being tackled by such prominent figures as Pylyshyn (1973,4
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2002), Fodor (1975), Block (1981), Kosslyn (1980, 1994) and Barsalou (1999).5

The plethora of research on the topic is grounded in the fact of MI being6

an ubiquitous, yet wholly individual experience on the one hand, and easy7

to explain, yet hard to deal with scientifically on the other hand. A text-8

book definition (Eysenck, 2012) paints MI as the representation in a person’s9

mind of the physical world outside of that person. It is characterized as a10

quasi-perceptual experience, as it occurs in the absence of what is perceived11

to be the appropriate stimuli from the outside. Aside from representing12

such a rich element in our mental lives, it is thought to be central to many13

cognitive abilities, such as memory (Paivio, 1986) and motivation (McMa-14

hon, 1973), but its foremost role is its involvement in visuospatial reasoning15

(Sima, 2014) and creative thought (Palmiero et al., 2016). The former is16

the focus of our own research.17

There are many approaches to researching visuospatial MI, both theo-18

retical and methodological. There are three prevailing theories: the pictorial19

theory (Kosslyn, 1994), the descriptive theory (Pylyshyn, 2002) and the en-20

active theory (Thomas, 1999). The pictorial theory claims that MI is the21

processing of the mental image in the visual buffer using processes of visual22

perception. This visual buffer is supposedly used in a parallel way during23

visual perception in order to create a mental representation of what is per-24

ceived. The descriptive theory claims that MI is the processing of amodal25

descriptions, which constitute the mental image. These descriptions are not26

a part of, or processed by, sensorimotor-related mechanisms. The enactive27

theory claims that MI emerges with the use of the same schemata that are28

used for perceiving the external world, e.g., certain schemas of eye move-29

ments. For instance, the well known Soar symbolic cognitive architecture,30

extended with a spatial visual system and a mental imagery module (Lath-31

rop & Laird, 2009) has features of pictorial and descriptive theories, but not32

the enactive theory.33

The enactive theory will be described more in-depth, as it serves as a34

paradigm for this research. Methodologically, analytic and synthetic ap-35

proaches to science (Mirolli & Parisi, 2009) are both valid when researching36

MI (Sima, 2014). The analytic approach to science constitutes research-37

ing a phenomenon through observation and experiment. Cognitive psychol-38

ogy (Chambers & Reisberg, 1985), cognitive neuroscience (Bartolomeo &39

Chokron, 2002) and phenomenology (Thompson, 2007) have dealt with MI40

in this way. The synthetic approach to science tries to understand phe-41

nomena by making computer or robot models. The approach tries to apply42

principles, used and learned from successful implementations of computer43

models, to explain real phenomena. It sees models as possible explanations44

of reality. More specifically, one of the most common methods in mod-45

eling cognitive phenomena is the use of artificial neural networks (ANNs),46

which serve as a bridge between behavior and biology (O’Reilly & Munakata,47

2000). ANNs were used in this research as well.48
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The paper is organized as follows. Section 1 provides of an overview of49

enactive approaches to mental imagery, including perceptual instantiation50

theory (Sima, 2012), that serves as the main conceptual source for our work.51

Section 2 presents the architecture of our model. Section 3 presents the sim-52

ulations of the proposed model on three specified tasks. Section 4 describes53

the results of simulations. Section 5 provides the discussion of the model54

performance and the potential extensions. Section 6 summarizes the paper.55

1.1. Enactive approaches to vision56

The fundamental movement that spawned enactive sensorimotor ap-57

proaches was the ecological cognition movement. One of the most important58

concepts from it is Neisser’s (1976) schema, conceptualized to account for59

his idea of cognition, especially perception. According to Neisser, organisms60

don’t just pick up information from the environment, they actively search for61

the information they need from the environment. Schemata serve to explain62

how organisms extract needed information. Organisms use participatory63

schemata to select information by constructing anticipations of information64

and waiting for the information to occur in the environment. Only then65

can information be acquired. Neisser’s notion summarizes this: “We can see66

only what we know how to look for” (Neisser, 1976, p. 20). Therefore, there67

is a direct relation between perception and action. Schemata are a part of68

the perception-action cycle: schemata direct action to information, which is69

picked up by action and goe to schemata, modifying it in the process.70

Neisser’s account is somewhat consistent with the well-known ecological71

approach to visual perception (Gibson, 1986). It similarly focuses on re-72

searching how an active agent extracts information from the environment.73

Gibson also rejects the idea that sensory inputs are simply transformed into74

perceptions by some processes in the mind, and strongly advocates that75

perception can only be explained in terms of active observers, especially76

observers that move (or, more accurately, perform a motor action). Percep-77

tion is therefore by definition not passive. The most relevant concept from78

Gibson’s approach for the means of this research is the idea of affordances.79

Simply stated, an affordance is what environment affords or offers the agent.80

In more applicable terms, it is especially connected to categorization. By81

taking affordances seriously, categories can be defined by actions affording82

the perceptions of a specific category.83

Arbib (1981) relies on Gibsonian ecological psychology and Neisser’s con-84

cepts to offer his account on the phenomena, heavily shaped by cybernetics85

and control theory. He unambiguously characterizes perception “as poten-86

tial action” (Ibid., p. 1459) through the concept of action-perception cycles,87

saying: “The subject’s exploration of the visual world is directed by antici-88

patory schemas, which Neisser defines as plans for perceptual action as well89

as readiness for particular kinds of optical structure. The information picked90

up modifies the perceiver’s anticipations of certain kinds of information that,91
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thus modified, direct further exploration and prepare the perceiver for more92

information” (Ibid., p. 1458).93

These approaches were most prominently followed by a more contempo-94

rary enactive, sensorimotor theory of perceptual consciousness (O’Regan’s95

and Noë’s, 2001). A similar idea emerges as before – that sensory stimula-96

tion depends on an active agent, on a perceiver in action. However, O’Regan97

and Noë attribute more power to action, as they don’t believe that acting is98

only for retrieving sensory information – it equally contributes to perception99

itself as a whole, as experience.100

Another aspect, not directly present in enactive visual perception ac-101

counts, yet clearly related, is the construction of our personal visual world102

and the role of saccades in this process. A saccade is a very fast movement103

of both eyes from one position to another. There are up to 5 saccades per104

second occurring in every individual (Hancock et al., 2012). This movement105

is not smooth, it is rather a jump, and it is done unconsciously. It is also106

consciously undetected due to its speed and top-down visual processing that107

constructs the world we see (Blackmore et al., 1995). The latter is neces-108

sary to build this conscious visual model of the world that we experience,109

otherwise we would experience the perceived visuals as constantly going in110

and out. We also do not take in the whole rectangular picture before us as111

experienced bottom-up – it is only due to saccades that go from position112

to position that we can construct this stable, whole image. This may also113

be a crucial difference between biological visual perception and computer114

vision. While biological vision constructs the experienced image one bit at115

a time through fast moving saccadic movements, computer vision takes in116

the picture in front of the camera as a whole (Figure 1).117

Figure 1: Left (Bays & Husain, 2008): The visual percept we take in in order to construct
the experienced picture of the world. The left bit is one salient object (the man), the
right bit contains another salient object (the lamp). Right: The approximal picture of
the world we experience, constructed top-down from visual memory and other processes.
To construct it, saccades are needed to other salient objects, like the dog and the car,
therefore at least 3 saccades (man → lamp → dog → car). This also represents the picture
that computer vision immediately perceives, without the need of biological construction
(Szeliski, 2011).

These aspects of visual perception contribute to the understanding of118

the enactive approach to MI and its applicability in this research.119
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1.2. Enactive approaches to mental imagery120

The first comprehensive account for the enactive approach to mental im-121

agery was realized by Thomas (1999). It does not only encompass visual122

perception, but all perceptual modalities. The theory can be condensed into123

four principles: 1) mental representations do not exist as such, 2) percep-124

tion is realized by actively interrogating the environment, 3) agents possess125

unique perceptual instruments for interrogating the environment for infor-126

mation and extracting it, 4) these perceptual instruments are guided by127

the agents’ schemata. For illustration, consider looking at another person.128

The observer considers bottom-up information, which guides, and is in turn,129

guided by the top-down schemata. With perceptual instruments, the person130

perceives them as a whole (with saccades, among other things). Then the131

agent closes his eyes. Schemata for a person guide appropriate perceptual132

instruments (saccades, among other things) and try to recognize the person,133

but there is no person. This causes mental imagery. Sima (2014) builds134

upon this theory with his perceptual instantiation theory of visuospatial135

theory. Our work is essentially based on this approach.136

1.3. Perceptual instantiation theory137

Sima’s perceptual instantiation theory (PIT) incorporates enactive ap-138

proaches to visual perception (discussed previously) and the studies on eye139

movements. Along with aspects of these (especially relevant to this research140

is the notion that recognition is successful using top-down guided percep-141

tual actions (PAs) to external stimuli; PAs will be discussed later on), the142

main assumption is that perceptual processes are “re-used” in MI. There is a143

number of mechanisms, connected with both visual perception and MI. The144

construction of the visual world is affected by bottom-up, external stimuli,145

which is realized in the agent as so-called perceptual information, but there146

is also top-down involvement, namely more conceptual information, coming147

from mental concepts. Mental concepts hold conceptual information, which148

may be qualitative, i.e. “red, small, square” and the necessary guidelines149

for enacting the right PAs (for the concepts in question; used in MI, but150

also in anticipation and prediction of the external world). The case of PAs151

is central to PIT. They are all those movements that enable the extraction152

of information from the environment (in case of visual perception, these153

are saccades and micro-saccades, lens adjustment, head movements, etc.).154

The main point of PAs is therefore retrieving the needed information from155

the environment, and different kinds of PAs can retrieve different kinds of156

information.157

Another important aspect of Sima’s theory is the visuospatial long-term158

memory (VS-LTM). It serves as a glue between mental concepts and PAs, as159

it maps one onto another and vice versa in order to produce the knowledge160

of how to look at the world and recognize entities in it. This constitutes161
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a long-term memory, while a more general short-term memory serves as a162

keeper for current perception: identified mental concepts, perceptual infor-163

mation and the interpretation of the two merged together (what we see as164

a whole – e.g., when perceptual information is retrieved, it is compared to165

plausible mental concepts and the most consistent one is chosen for inter-166

pretation, which guides the PAs to retrieve even more information). Mental167

imagery supposedly builds on most of these concepts. For mental imagery,168

mental concepts are utilized and with the help of VS-LTM engage appropri-169

ate PAs. However, since there are no external stimuli from the environment170

and no perceptual information that guides the mental concepts (at least171

consciously), we do not get a picture of the real world, but rather a men-172

tal image, yet produced with a set of similar (mostly unconsciously driven)173

bodily movements as when perceiving (saccades, lens adjustment, etc.). Af-174

ter MI comes into place, perceptual information can be retrieved from it,175

and this, according to Sima, then leads to high-level cognitive processes, like176

reasoning.177

Figure 2: Visual perception and MI cycle: “1) the selection of a PA based on the identified
mental concepts and available perceptual information; 2) the execution of the PA to
retrieve further perceptual information; and 3) the identification of mental concepts based
on the available perceptual information” (Sima, 2014, p. 70).

Last but not least, yet another extremely important aspect of PIT is that178

it has actually been formalized, which is a big departure from most previous,179

to a degree too vague and abstract discussions on MI. The basis of PIT is the180

formal description of the MI operands: a) perceptual information: low-level181

features that agents can perceive (edges, color, etc.), b) perceptual actions:182

basic actions of agents’ visual system (saccades, lens adjustments, etc.), c)183

mental concepts: conceptual information, linking perceptual information184

and PA. These operands function in a cycle, shown in Figure 2. This cycle185

is further incorporated into a formal framework of PIT, as can be seen in186
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Figure 3. Sima also presents a computational model, but it is completely187

symbolic and does not come with implementation.188

Figure 3: Mental imagination: “1) the retrieval of a set of mental concepts from C-LTM
(long-term memory of conceptual information) which conceptually describe the scene; 2)
these mental concepts are successively instantiated with perceptual information by the
cyclic process of select-execute-identify; 3) an interpretation is drawn from all identified
mental concepts with their instances of perceptual information; 4) this interpretation
constitutes the mental image of the scene” (Sima, 2014, p. 71).

1.4. Our model189

We take the main ideas of PIT, supplement them with our own and im-190

plement them in a biologically more relevant artificial neural network model.191

The most innovative contributions of our research include the novel work on192

robot vision with the inclusion of research on saccades and construction of193

the visual world (which called for improvisation in regards to limiting the194

usual visual field of robot vision), merged with enactive aspects on visual195

perception and MI (e.g., the meeting of bottom-up and top-down mecha-196

nisms, PAs, affordances in relation with mental concepts).197

The ANNs are often used in controlling the iCub, one of the most accu-198

rate child-like robots, which has 53 degrees of freedom, movable eyes with199

cameras and numerous other sensors. The simulation of the iCub, used for200

the research, is built on Open Dynamics Engine, which provides a safe and201

ecological environment for testing. Our own testing for the iCub and its en-202

active visual and mental image characteristics is based on actual cognitive203
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neuroscientific work to ensure ecological validity. This especially includes204

findings on salience in regards to movements of saccades – namely that205

when going from object A to the most salient object B, there is some kind206

of inhibition to avoid loops, i.e. going back to the most salient object from207

object B, which would be object A (Hooge & Frens, 2000), that saccades208

land towards center-of-mass position (Findlay, 1982) – but also the work on209

edges (of, for example, shapes), recognized by, e.g., shading (Humphrey et210

al., 1996). There is also evidence that eye movements during mental im-211

agery are not epiphenomenal but assist the process of image generation. In212

other words, the eye scanpaths during visual imagery reenact those of per-213

ception of the same visual scene, therefore playing a functional role (Laeng214

& Teodorescu, 2002; Bourlon et al, 2011).215

The role of perceptual actions (albeit called with different names) has216

also already been proved to be important in categorization processes, e.g.,217

in modeling approaches based on evolutionary robotics. Mirolli et al. (2010)218

present an artificial vision system (composed of fovea and periphery, with219

simple image processing) that demonstrates the ability to categorise five220

different kinds of images (letters) of different sizes by exploiting its sensory-221

motor interactions with its (visual) environment. Similarly, Morlino et222

al. (2011) demonstrate how a simulated neuro-robot situated in an environ-223

ment containing parallelepiped objects that (continuously) vary in shape,224

size, and orientation can develop an ability to associate sensory-motor stim-225

uli with abstract categories and to generalize to new objects. Lanihun et226

al. (2015) extend the work of Mirolli et al. (2010) by using a more com-227

plex image preprocessing technique (HOG) that help to translate to motor228

responses enhancing the categorization capability for robotic vision control229

system in the iCub.230

Aside from cognitive robotics, ANNs have proven to be useful in vari-231

ous image classification tasks. For instance, Larochelle and Hinton (2010)232

demonstrated that a Boltzmann machine can be trained to integrate infor-233

mation gathered from several spatially limited glimpses at a static image in234

order to perform object classification.235

Looking at a few other comparable MI models (in terms of using ANNs236

and their predictive power), some of which are considered to be “represen-237

tative of the state of the art in the field” (Di Nuovo et al., 2013, p. 217),238

different approaches can be discerned. These are examined in the discussion.239

Our research sets out to accomplish several objectives. Taking the syn-240

thetic approach to investigating cognitive phenomena, it is set up as a proof241

of concept and designed to be exploratory rather than to solve specific prob-242

lems. Nevertheless, the tasks are set up in a way that conveys the problem-243

solving capabilities of the model. The main objective of the research is244

to ground the elusiveness of the phenomenon of MI (see the introductory245

paragraph) through enactive approaches to vision (as a necessary prerequi-246

site) and enactive approaches to mental imagery. As enactive theories to247
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vision stress the necessity of action for perception, we try to implement this248

through anticipatory behavior of the model, which needs to make certain249

movements to get new information and therefore come closer to solving a250

task. What similar MI models (e.g., Chersi et al., 2013; Seepanomwan et al.,251

2013; Gaona et al., 2014; Di Nuovo et al., 2011) disregard is the nature of252

visual construction – new visual information from the environment is gotten253

not at the same time and in full, which is how computer vision works, but254

rather sequentially and in limited range, through the use of saccades, while255

the rest of the experienced rectangular picture is filled-in top-down (see Sec-256

tion 1.1). This is a fundamentally different approach as this is parallel to257

what happens in MI, with eyes closed.258

We try to implement these principles into our model as we see this to259

be an unused approach and it seems to be fairly more ecological than other260

similar approaches, making our model more viable and novel. Afterwards,261

we try to make a bridge from vision to mental imagery, connecting both on262

the same enactive principles in the same model, making it less phenomenon-263

specific and more complete in this regard than some similar models (e.g.,264

Mirolli et al., 2010; Morlino et al., 2011, Lanihun et al., 2015). We demon-265

strate how mental imagery and its use for spatial problem-solving can be266

grounded in enactive processes (e.g., perceptual actions) as opposed to the267

grounding of other – arguably competing – theories, especially pictorial and268

descriptive theories.269

As such, our model is a case for enactive approaches to vision and mental270

imagery, which are still emerging as viable paradigms in empirical, be it271

analytic or synthetic (Mirolli & Parisi, 2009), research. More generally,272

our model fits into the paradigms of sensorimotor enactivism and embodied273

cognition, and therefore lays another piece into the mosaic of the case for274

their feasibility, especially when the symbolic approaches are still prevalent.275

2. The model276

2.1. Overview of components277

Our proposed model consists of three major modules (components): The278

first is the forward model (FM) predicting the next state within the con-279

figuration of an imagined object, in terms of proprioceptive and categorical280

information, based on a state and perceptual action input. The second mod-281

ule is the inverse model (IM), which predicts the direction and size of a PA,282

which can be executed by the robot’s visual system. The third module is283

referred to as memory module (MM) which also has a control function, such284

that it initiates the FM and IM in one of three tasks (described later) and285

keeps track of the necessary requirements with memory-like aspects (e.g. the286

number of executed actions). Furthermore, it serves as a “social” interface287

between the robot and the task giver.288
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Figure 4 provides an overview of the proposed system architecture and289

additionally provides visual information about the most important flow of290

information within the modules. All three proposed MI tasks can be per-291

formed using this configuration, with changes made only in the specification292

of the MM. Next, we describe the individual modules in more detail.293

Figure 4: Overview of the proposed system architecture for visuospatial MI. Displayed
are the three main components of the system: the forward and inverse models, connected
by the controller module. The inputs and outputs for each subsystem are indicated with
white boxes. The solid arrows represent the most important information flow necessary
for a single PA. The internal update of processed states and performed PAs are indicated
with dashed arrows.

2.2. Forward model294

The basic idea of a forward model is to predict the next state of the295

system as a result of an executed action. Our FM, illustrated in Figure 5,296

has the same function: it takes as input the current state of the positions of297

the robot’s eyes and the action generated by the inverse model and outputs298

the next state, i.e. the state of the eyes after the executed action. However,299

our theory grounds concepts in perceptual actions and thus these actions300

can also answer questions about what the robot is currently looking at. For301

this reason, our forward model has another use – to recognize the scene.302

The FM in this work is composed of two neural networks, both fed with the303

same input (the state and action). One neural network predicts the next304

state, while the other predicts categorical information about the currently305

viewed object. This recognition part is not a typical part of the FM, but306

since PAs are the basis for scene recognition and FM takes actions as inputs,307

we decided to expand the FM to also act as a scene recognition model.308

The categorical information about the scene, provided by the second309

part of the FM, consists of the current object (in our case a triangle or a310

square), the object size, direction of the visual trajectory around the object311

and the current position within the trajectory. Objects and current position312

have one-hot encoding, direction is binary (0 for counter-clockwise and 1 for313
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clockwise) and size as a continuous1 value between 0 and 1. There are four314

possible positions for a square, labeled A–D, and three for a triangle, where315

D is ignored (see Figure 8).316

Figure 5: Diagram of the forward model. On its input there are coordinates of the current
state (azimuth - x, and elevation - y) and a change of these coordinates as the PA. State
hidden layer consists of 17 neurons and the categorical hidden layer contains 45 neurons.
The context layer is of the same size as categorical hidden layer. On the output we have 2
coordinates for next state and 8 outputs for categorical information, 2 for one-hot encoding
of object ID (10 for triangle, and 01 for square), 1 for a binary direction, 4 for one-hot
encoding of the current position and the last one encodes size.

Computing the next state is a trivial operation of adding the action to317

the state and could be computed directly without the need of a neural net-318

work, but because our model is connectionist we decided to use a multilayer319

perceptron for this computation. Its output is approximate (rather than320

discrete), making this model closer to biological systems. Because the cate-321

gorical information can only be extracted from a series of perceptual actions322

and not from a single one, the categorical part of the FM needs access to323

previous contexts. This is achieved by using a simple recurrent network324

(Elman, 1990).325

2.3. Inverse model326

The overall goal of the IM is to predict the angular values of a single327

perceptual action. This action is then performed as a saccadic movement328

by the robot’s eye. The eye movement can be expressed in terms of a329

1More precisely, size is not a categorical information, but for practical reasons we
included it here.
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vertical and horizontal part (i.e. its elevation and azimuth) so the IM’s330

output consists of two units, each coding for one of them.331

Figure 6: Architecture of the inverse model. Input representation consists of two units
encoding the coordinates of the current state (x = azimuth, y = elevation) as well as 7
inputs encoding categorical information. Four units encode the current position in one-
hot encoding, one unit represents the size. Two binary units encode the Object ID and
processing direction. The output consists of the predicted change in state in azimuth and
elevation, i.e. the PAs. The hidden layer has 20 units.

As shown in Figure 6, the IM uses 9 different inputs with an activation332

range of [0;1]. Two inputs encode the system’s current proprioceptive state333

(azimuth and elevation). Further inputs encode the object ID (one-hot),334

the parsing direction (0 = counter-clockwise, 1 = clockwise) and the size335

(continuous). The final four inputs encode the current position within an336

object (from A to C for triangles and A to D for squares). All values for these337

input units stem from the predictions of the FM and are therefore based on338

the overall system’s imagined state. No changes were made to outputs of the339

FM, except for range conversions from [−1;1] to [0;1], if necessary. The two340

output units, encoding azimuth and elevation of the PA, have an activation341

range [−1;1]. This range is then transformed into angular values and fed into342

the robot’s gaze controller in order to perform the corresponding PA. The343

IM has an architecture of a feed-forward network consisting with a single344

(fully connected) hidden layer of 20 units that connects the described input345

layer of 9 units with an output layer of two units.346

It should be noted that the proposed architecture of the IM differs from347

a “typical” one presented in other research, as it does not use any target348
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state information as input. Instead, it predicts the PA based only on the349

current proprioceptive state and the categorical information.350

2.4. Memory module351

The memory module is implemented as a simple symbol-processing based352

script, which activates the two remaining networks in order to solve the cur-353

rently given task. The memory module stores information and provides the354

required ability to solve the tasks: First, it stores all task-specific variables,355

such as the type of task currently processed, the object type (triangle or356

square), as well as required additional information such as size, if needed357

for a particular task. Second, the MM provides simple verbal feedback in358

written language to communicate with the human user and indicate the359

predicted answer to a question. Furthermore, the MM keeps track of the360

performed PAs and the starting position within the object, and uses this361

information to decide if a task was solved successfully or not (when the362

starting position is reached again, the shape trajectory is complete). Its363

current state is to be seen as a prototype in order to maintain the validity364

of the model with regard to the underlying theory (more on this topic in the365

discussion).366

The MM calls the two remaining modules repeatedly in order to solve367

the task at hand. It is responsible for the flow of information from the368

FM output to the IM input and from the IM output to the FM input.369

Furthermore, it controls the transformations between azimuth and elevation370

angle based coordinates that are required as activation values for the robot’s371

visual system and the network’s internal activation system.372

2.5. Visual processing interface373

The described model architecture receives inputs from and outputs com-374

mands to an interface of a simulated iCub robot. This interface provides375

the network with the current proprioceptive state of the robot’s eyes. It376

should be noted that for the described three tasks we employed only one eye377

of the robot, resulting in mono vision. While this still outputs sufficiently378

enough visual information about the presented object, it makes any complex379

stereo-vision computations (such as eye vergence) unnecessary. However, the380

interface can in theory easily be extended to perform stereo-vision based pro-381

cessing. Any change in the robot’s proprioceptive state (and therefore any382

changes in visual input) are triggered exclusively by PAs commanded by the383

inverse model described previously.384

The actual movement is performed by the iCub’s inverse kinematics mod-385

ule (Roncone et al, 2016). It computes a valid path between a given pro-386

prioceptive starting and target state. In this implementation, we fixed all387

available joints of the iCub robot except for two degrees of freedom in eye388

azimuth and elevation, resulting in non-ambiguous trajectories required in389

order to reach a particular state. However, the model can be re-used as-is in390
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combination with an inverse kinematics module computing a trajectory for391

more movable joints (the representation of proprioceptive state would have392

to be expanded to include all degrees of freedom).393

The visual processing interface additionally comprises a simple corner394

and edge detection test, based on the OpenCV implementation of Harris395

corner detection. This corner detection routine was further used to compute396

the start position within an object after “landing” at a random corner of397

it based on salience. For this, the central point of gravity of the given 2D398

shape was calculated based on the spatial relations of the corners.399

2.6. Unit activation range conversion400

All network input and output units require transformations between the401

activation ranges (ranging between [0;1] and [−1;+1]) for the network units402

and the actual angle values (azimuth and elevation) that can be reached by403

the simulated robot’s eyes. Based on empirical tests, we implemented several404

routines to map elevation angles from [−12;+12] range and azimuth angles405

from [−35;+35] onto [−1;+1] range. Similar routines provide transformation406

in opposite direction. It should be noted that both the FM and IM use407

the same transformation scheme. This enables the model to process only408

[−1;+1] ranged values internally, without remapping back to initial (physical409

and perceptual) values.410

2.7. Implementation411

Both the FM and IM were implemented in Theano, with some routines412

based on the Lasagne package for simplified neural network construction. All413

neural network scripts were written in Python, while the controller scripts414

for the iCub simulator consisted of both scripts in Python and C++. All415

training and testing steps were executed on notebook CPU.416

3. Experiments417

3.1. Data acquisition418

Just as biological agents have to learn to use their bodies to their full419

capabilities, so did our model need to train on many examples to achieve420

optimal performance. These examples were gathered from iCub performing421

PAs in the simulator with the help of iCub’s inverse kinematics gaze con-422

troller module (Roncone et al, 2016). We created a square and an equilateral423

triangle, both with side lengths of 25 cm, and changed the floor, background424

and all surroundings to a white texture, so that only the object could be425

visible. Because our model deals with PAs in the form of saccades, we were426

only interested in 2 degrees of freedom, namely eye version (azimuth) and427

tilt (elevation), and all other iCub’s joints except the eyes were turned off.428

Eye vergence could not be disabled, but since we only worked with the left429
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camera image it did not matter. Object size was manipulated through the430

distance from the eyes because our main interest was in the saccades per-431

formed and not judging the distance (which would be difficult as there were432

no reference points in the white surroundings and vergence was ignored).433

The training procedure for each object was as follows. First an object434

was presented in the visual field before iCub’s immobile head within its vi-435

sual field, which was limited to [−35;+35] degrees for the azimuth angle and436

[−12;+12] for the elevation angle. These constraints were set empirically so437

as to avoid extreme angles where the gaze controller’s performance was not438

guaranteed. Then a Harris corner detection was performed on the seen im-439

age to detect salience points and a saccade movement to the nearest corner440

was performed. The first saccadic movement was not stored as part of the441

object trajectory because it only represented attention to the object. The442

next steps had the same structure: first the salience points were detected,443

a saccade to the nearest point was performed and finally, in order to avoid444

flipping back and forth between the same corners, evaluation that the new445

fixation did not match the one before the last PA was done via compari-446

son of eye states. If the PA was valid (i.e. the eye gaze did visit the next447

corner), it was stored as part of the object. After the whole object had448

been traversed, its actions were written to a corpus along with categorical449

information extracted along the way. The training corpus consisted of 2500450

instantiations of objects of both shapes and various sizes, all starting posi-451

tions and directions at various locations within the visual field. An example452

of the iCub performing the saccades is in Figure 7.453

Categorical information about the scene consists of shape information454

(number of corners), starting position, direction and object size. Shape455

information was already known at the point of object creation, while the456

size and the starting position could only be determined after the first action457

– attention to the object. At this time the whole object was in view and458

its size could be determined by calculating the portion of the image that it459

covered and then scaled to [0;1] range, where 0 represents an invisibly small460

object and 1 represents the size of the largest instantiation of an object461

that could be seen. The starting position was determined with the help of462

other salience points (corners), because their average showed their center of463

mass and thus indicated where the rest of the object lay, relative to the eye464

focus. Direction of the trajectory was determined after the second action465

in a sequence when the positions of the first two fixations were known.466

Current position was then inferred from the starting position, direction and467

the number of performed saccades.468

3.2. Forward model training469

The state predicting part of the FM was trained for 30 epochs over all470

objects in the training set with learning rate 0.01 and the categorical part471

was trained for 100 epochs with learning rate 0.008. Both parts also used472
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Figure 7: A sequence depicting iCub fixating upon the corners of a triangle. On the left
we can see the sequence of images from iCub’s eyes, on the right we have the iCub with
corresponding eye gaze.

momentum of 0.9 to optimize the learning. Because categorical information473

differed in how it was encoded – one-hot encoding for object ID and current474

position, binary for direction and continuous value for size – a bit of tweaking475

was necessary to optimize the learning of size, because ordinary sigmoid476

activation resulted in the size neuron always outputting a value very near477

0.5. This happened because the (continuous) size information is the noisiest478

in contrast to other, binary data. For this reason in recognition part we479

used sigmoid units with a slope k = 20 and in the last 25 epochs only size480

neuron’s error was backpropagated constantly while the error from other481

output units was ignored if it was smaller than 0.1 (in absolute value). In482

this way the last part of the training was dedicated to fine-tuning the size483

neuron.484
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3.3. Inverse model training485

The inverse model consists of an input layer spanning 9 units, as ex-486

plained in Section 2.3. Two input units encode the azimuth and elevation487

angles of the current state and four input units encode the current posi-488

tion (representing one of the corners for a triangle or a square). Object489

size, object ID and the processing direction of the object are represented490

by one input unit each. During processing the values for all input units are491

generated by the forward model.492

The output units have a range of [−1,1] which is transformed directly into493

the corresponding angular value, as described in Section 2.6. These angular494

values represent the change in degrees of freedom for azimuth and elevation495

that can be performed by the iCub robot’s gaze module to perform a single496

PA. Therefore, the angular values for the performed PAs, as retrieved by the497

iCub’s visual interface, can directly be used as targets to train the inverse498

model.499

The output units were equipped with a hyperbolic tangent activation500

function in order to return values between −1 and 1. The model was trained501

using stochastic gradient descent with Nesterov momentum by employing502

the mean squared error between the predicted and target vectors. The503

training lasted 30 epochs with a learning rate 0.01 and a momentum 0.75.504

Figure 8: Examples for valid object orientation and corner naming.

Figure 9: Examples of skewed objects located at the edge of vision.

3.4. Simplifications505

A variety of simplifications were chosen in order to decrease the task506

complexity while maintaining its ecological validity: First, the range of imag-507

inable objects is restricted to triangles and squares. Furthermore, triangles508
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are always equilateral and standing up-right. Figure 8 provides an example509

of two valid objects with corner names. It should be noted that the visual510

input to the iCub simulator eyes can be skewed significantly, resulting in dis-511

torted shapes, i.e. not truly equilateral triangles and curved outlines instead512

of straight edges; see Figure 9. The presented objects are not rotated, but513

remain in a fixed orientation, varying only in the location within the robot’s514

visual field and their size. This means that both squares and triangles have515

a horizontal edge facing downwards (i.e. pointing towards the simulator’s516

ground surface) in the simulator. A further simplification is the aspect of a517

starting position, for all three tasks the system was trained and tested with518

the first state within an object.519

3.5. Task specifications520

Three different tasks have been designed and can be solved by the current521

implementation of the proposed architecture. Considering the concept of an522

internal model of the agent (Gigliotta, Pezzulo & Nolfi, 2011), tasks 1 and523

2 correspond to an online mode (where the agent receives an input from the524

environment) and task 3 to an offline mode.525

3.5.1. Task 1: Salience-based object recognition526

For this task, “What is the input?”, the robot’s eyes are always open,527

i.e. visual input is processed for the task continuously. Any performed sac-528

cades are salience-driven, leading the robot’s eyes around the shape of the529

presented object. The robot has to predict the identity and the size of the530

visible object based on 3 (for triangles) or 4 (for squares) saccades. For531

this task, objects of random size, identity and position were created, con-532

strained to appear within the current field of view. The paths were started533

at a random corner within the object, and lead in a random direction (ei-534

ther clockwise or counter-clockwise). For more detailed evaluation of the535

system’s performance, predictions were generated after each PA. However,536

for the final accuracy score, only the final prediction was used, after passing537

all PAs within the object. The initial saccade towards the object (i.e. the538

result of the salience of the entire object) was not passed to the system for539

processing.540

3.5.2. Task 2: Imagination-based object recognition541

In order to solve this task, “Is this a triangle (a square)?”, the robot542

once again processes visual input with open eyes. However, this time, any543

performed saccades (i.e. PAs) are purely imagination-driven. Here, the sys-544

tem has to predict size and direction of the PAs required to perform the545

path of the requested object. The object size is extracted based on salience546

immediately after “reaching” the object, as described previously. Several547

simplifications were made for this task. Most importantly, any succesfully548
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reached corner was used to update the system’s internal state memory in or-549

der to decrease the error generated by multiplying slightly misaligned states,550

predicted by the forward model. This is in contrast to the imagination task551

(task 3) and focuses on exactly this aspect of error multiplication within552

states generated in imagination. For this task, correcting the performed553

PAs towards any close corner is a valid approach, as saccades in the real554

world similarly end at points with a certain salience distribution on a lo-555

cal level. Furthermore, this simplification is inspired by microsaccades, as556

they appear in humans. We suggest that externally correcting the predicted557

movement resembles micro-saccadic activity to an adequate level. The land-558

ing position was checked for each single performed eye motion. If no corner559

appeared within a fixed range of 30 pixels (i.e. the size of focus or the range560

of microsaccades), the process was either restarted with the remaining direc-561

tion or ended if both directions were attempted. As mentioned previously,562

another simplification was to set the starting state within the object and563

not allowing for objects within objects. This means that the system always564

makes a prediction based on a trajectory from the first to the last performed565

PA. For example, there cannot be four actions of which the last three are a566

triangle (with valid edges between corners).567

This task is more complex problem than the previous one, as now the568

combined performance of the system is measured. Errors made in the IM569

can lead to a weaker FM (and thereby combined) performance and vice570

versa.571

3.5.3. Task 3: Object imagination572

The third task, “Imagine a triangle (a square)!”, requires the robot to573

output a valid path that corresponds to the given shape identity input.574

During this process, no visual information from the robot’s perception is575

processed. Therefore, the robot’s eyes are closed the entire time. In a purely576

imaginative process, the system has to predict 3 (triangle) or 4 (square) PAs577

as well as the corresponding set of 4 or 5 states. Here, the first and the last578

predicted state should ideally be identical, and the difference between them579

can be used in order to compute accuracy. The correctness of the path is580

checked for validity, in terms of a continuous size of PAs and their alignment.581

The process is instantiated with a randomly generated size value in order to582

check for prototype effects, i.e. preferred sizes where the combined network583

operates most efficiently. The generated paths were additionally evaluated584

by being projected on a flat surface within the field of view and thereby585

generating a visual trajectory.586

Task 3 requires the system to be very accurate in both motor actions587

as well as in the production of their internal representation. This is mainly588

due to the fact that, as the task represents a pure imaginative process, the589

output of the inverse model is not corrected by comparison with an existing590

visual object. This means that there is significantly more room for error591
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multiplication during object imagination compared to task 2. The output592

of the categorical part of the FM is used only for validation and is not input593

into the IM, which receives the task’s categorical specifications.594

3.6. Memory module in task solving595

For task 1, the MM calls iCub’s inverse kinematics module and feeds the596

generated PAs as well as extracted categorical information to the inputs of597

the FM. This is done for each individual action and followed by a prediction598

of the system. The prediction is then converted into linguistic labels and599

printed for accuracy evaluation.600

In order to solve task 2, the MM is able to get initialization values from601

the robot’s visual interface and start the task processing by causing the in-602

verse model to generate the first action. This action is then fed into the603

forward model in order to start the loop that finishes when the last PA is604

performed. After each performed PA, the MM is used to assess the accu-605

racy of the FM’s categorical predictions. In case of mismatch, the loop is606

discontinued and the task processing is finished if no remaining trajectory607

directions are left. If the network successfully performs the required amount608

of PAs, the task is solved. In both cases, the outcome is once again trans-609

formed into the corresponding linguistic labels and printed for evaluation.610

In task 3, the MM acts as an initializer and the connection between611

the FM and IM. The initialization occurs as a random choice of starting612

state, size, direction and starting position. These parameters are input into613

the IM, which generates the first perceptual action. The FM receives the614

starting state and first PA to predict the next state. The FM’s new state615

output is then connected to the input of both the IM and FM and the action616

output of the IM is connected back to the FM’s input. Thus a loop is formed617

which runs until the MM recognizes that the object trajectory is complete.618

No transformations are needed for the state and action values as this task is619

processed in unit activation values. The MM additionally checks the FM’s620

categorical output in order to validate that the model is doing correctly.621

However, only the actual task specifications are input into the IM (i.e. the622

IM is generating actions for the task at hand.)623

4. Results624

In this section we describe the performance of the proposed model. The625

whole corpus obtained with the iCub’s inverse kinematics module consisted626

of 2500 objects which were used both for training and testing of the modules.627

To test the generalization of the model, we split the corpus into various ratios628

of train/test data to see whether smaller training set impacts the learning.629

Ratios tested were 15, 20, 25, 33, 40, 50, 60 and 70% of data used for training,630

and the final squared test error of the separate and combined models can be631

seen in Figure 10.632
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The FM was trained 10 times on each amount of data and the mean633

error is always around 0.015–0.025, which suggests that the FM generalizes634

well. We can also observe large deviations at certain points, indicating that635

the model can get stuck on local minima and better optimization techniques636

could be used. The combined model was made by taking the best trained637

model parts and seems to be showing a slow gradual decline, which would638

indicate that somewhat better learning can be achieved with larger amounts639

of data. The IM error shows that the model generalizes very well, as there640

is practically no difference between the errors for the smallest and largest641

train set; both are around 0.005. In practice, this error translates to around642

0.5 degree inaccuracy for both azimuth and elevation angles. Now, we can643

assess the model performance with respect to three considered tasks.644

Figure 10: Difference in the final test results of both the FM and IM depending on the
amount of training data. The lines denote the mean errors over 10 runs for each training
set and the envelopes around the lines represent the standard deviation of the error.

4.1. Task 1: Salience based object recognition645

Results for this first task come in the form of accuracy of the predic-646

tion of object’s shape and size in terms of two linguistic labels for each:647

triangle/square and small/large. The results are nearly perfect even with648

the model trained on 625 (representing 25% of the total available training649

data) objects which proves the generalization ability of the forward model.650

Both tests were performed for a total amount of 40 objects, split into 20651

triangles and 20 squares of various sizes. It should be noted that this task652

is focused on the forward model accuracy as the action inputs are purely653

salience-driven and not generated by the system on its own. The errors654

in the results, which are always regarding the size label, occur entirely at655
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the border region between the two size categories, i.e. where target size is656

near 0.5 and the model outputs a nearly correct size, but within the wrong657

category. Figures 11 and 12 show mean size and shape accuracies in the658

upper two graphs for models trained on 625 and 1750 (representing 25%659

and 70% of the available data) objects, respectively, and size predictions for660

both types of objects in the lower two graphs.661

The model trained on 625 (25%) objects of the training data reached662

a mean accuracy of 95% for both triangles and squares for size prediction.663

The model trained on 1750 (70%) reached 100% for triangles and 95% for664

squares in size prediction. Both models reached a perfect score of 100% for665

object identity prediction.666
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Figure 11: Results of the task 1 of the model trained on 625 objects (25% of the data).
Upper graphs depict mean accuracy in size (left) and shape (right) along with standard
deviation, lower graphs depict the size predictions (red dots) and targets (black line) for
triangle (left) and square (right).
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Figure 12: Results of the task 1 of the model trained on 1750 objects (70% of the data).
Upper graphs depict mean accuracy in size (left) and shape (right), lower graphs depict
the size predictions (red dots) and targets (black line) for triangle (left) and square (right).

4.2. Task 2: Imagination based object recognition667

As task 2 was a classification task, we chose to present the results in a668

confusion matrix, which can be seen in Table 1. The model reached a total669

score F1 = 0.93 for both object types, for a total number of 80 objects,670

divided into 40 triangles and 40 squares. The model answered correctly in671

94% of the tested examples, with 18 triangles and 17 squares being correctly672

classified as such and all the incongruent cases (true negatives) recognized.673

The system failed to recognize 2 triangles and 3 squares and answered that674

the presented object was not the object in question. The model did not pro-675

duce any false positives, leading to perfect precision. Additional statistical676

measures describing the same evaluation, including the reached precision,677

recall and accuracy are summarized in Table 2. Accuracy accounts to the678

sum of true positives and true negatives weighted by the total sum of all679

predicted instances.680
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Table 1: Confusion matrix of the result for task 2. Cells represent (from top to bottom,
left to right): true positives, false negatives, false positives and true negatives.

answer
positive negative

target
congruent 35 5

incongruent 0 40

Table 2: Statistical measures obtained from the confusion matrix.

measure precision recall accuracy F1 score

value 1 0.88 0.94 0.93

4.2.1. Task 3: Object imagination681

We present visual trajectories of the imagined objects and measure the682

accuracies in terms of how close to the starting point the model finished683

its trajectory of the imagined object. Visual trajectories can be seen in684

Figures 13 to 16. In each case, the left image displays the trajectory drawn685

between the imagined states (i.e. where the FM predicted new states based686

on the IM actions), while the right trajectory shows the perceptual actions687

performed by the visual system. Each path is a trajectory starting at state 0688

and ending at state 3 (for triangles) or 4 (for squares), as a PA connects two689

neighboring states within a processed object. It should be noted that the690

model was requested to calculate both the initial state and the final state691

(i.e. after the last saccade) in order to compute an overall accuracy value for692

a performed trajectory. Figures 13 and 14 represent two valid instances with693

good accuracy regarding the initial and end state congruency, while Figures694

15 and 16 represent two iterations where the start-end accuracy is worse,695

resulting in a slightly more deformed shape. Other resulting trajectories are696

somewhere in between these examples and all of them resemble the ideal697

shapes quite well. The trajectories based on PAs and the internal states are698

not exactly the same, due to approximation properties of neural networks.699

The results are summarized in Figure 17. The overall mean start-end700

accuracy for triangles is 96% for azimuth, 88% for elevation and the mean701

of 92% in both directions. The same variables for squares are 96% for702

azimuth and 87% for elevation accuracy. The mean accuracy spanning both703

directions in squares is 91%.704

5. Discussion705

5.1. Forward model and inverse model performance706

The presented preceding tests of standalone forward and inverse model707

performance can be seen as sanity checks for the combined performance708

evaluations. Both models reached very good performance in their predefined709
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Figure 13: Plots of a nicely performed trajectory for a triangle within the imagination
task (task 3). The left image shows the trajectory with states as predicted with the FM,
while the right displays the PAs performed by the IM.

Figure 14: Plots of a nicely performed trajectory for a square within the imagination task
(task 3). The left image shows the trajectory with states and the right displays the PAs.

tasks and were evaluated to have the necessary accuracy to be combined into710

an integrated system. Our main insight during testing the inverse model was711

that the question how to present the current and previous state is non-trivial712

and could lead to very different performance. We decided to code the current713

and previous states in terms of discrete proprioceptive information along714

with the information about the current position within the object. It should715

be noted that we tried to keep both models as simple and transparent as716

possible. This helps with evaluating the combined models’ performance and717

additionally avoids over-fitting the train data set and thereby maintaining718

the largest possible generalization ability. This is important as the presented719

objects during test resemble quite strongly those presented in the training720

data set. As the results of the three tasks show, overfitting the data was not721

a problem with the presented models.722

5.2. Task 1: Salience-based object recognition723

Cognitive neuroscience and psychological accounts on salience in humans724

are neither ubiquitous nor uniformly agreed upon, which means that some725
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Figure 15: Plots of a performed trajectory for a triangle within the imagination task. The
left image shows the trajectory with states and the right displays the PAs. Although the
start and end points do not match, the shape is still recognizable.

Figure 16: Plots of a performed trajectory for a square within the imagination task. The
left image shows the trajectory with states and the right displays the PAs. Although the
start and end points do not match, the shape is still recognizable.

parts of our salience-based recognition are not completely ecological. This726

is especially true when it comes to choosing what is salient for the robot.727

One of the reasons is that what is salient most probably changes during de-728

velopment, making research on salience very difficult. We settled on looking729

for corners (in contrast to, for example, colors or edges) not for pragmatic730

reasons but based on the very simplified “world” that is presented to our731

robot. Our second choice that was not implemented (partly due to prag-732

matic reasons) was random eye movement, which might be true in babies.733

From this, certain patterns and logic may emerge in time, but we decided734

against such approach. The decision was also due to the fact that our focus735

did not lie on how salience is learned.736

Another phenomenon that we did not tackle is salience in peripheral737

vision. This is extremely problematic to discuss as peripheral vision itself738

is such a difficult topic due to how it is (at least partly) constructed in our739

experience. Salience is therefore even harder to research in peripheral vision.740

The latter is discussed more in-depth further on.741
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Figure 17: Results of the task 3, depicting the overall accuracy of the final state, and
separate dimensions of azimuth and elevation. The error bars depict standard deviation.

When solving this task, the system only processes the PAs performed742

within the object. This means that the leading and trailing PAs, such as743

caused by the attention towards the object or shifting away towards the744

next one, are not handed to the networks for prediction. Solving the task745

without these artificially introducing breaks between objects can be solved746

by the model too. In this case, however, further agreements must be found747

about how to evaluate the predicted identities for trajectories including PAs748

outside of any objects. One idea is to train the model on an extended dataset749

which has labels for these actions.750

Our model shows very good performance for this task, with mean accu-751

racies ranging from 95% for size recognition to 100% in identity recognition.752

The difference in overall performance between the data set sizes used for753

training is minimal and thus the model seems to generalize well even from754

smaller amounts of training data. The size prediction inaccuracies occurred755

exclusively when the presented object’s size was around 0.5 and consequently756

it was ambiguous whether this is a small or a large object. However, within757

an object category, size prediction worked equally well for all presented758

sizes. This means that the model learned to integrate both the actual size759

of the object as well as the eventually occurring skewing of saccades due to760

their nature of being projected on a sphere (in contrast to purely 2D image761

processing on a flat surface).762

5.3. Task 2: Imagination-based object recognition763

This task required the model to answer the Yes/No question related to764

object identity when presented with a single object of either congruent or765
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incongruent identity. Due to the nature of the task and the way the model766

is trained, no false positive answers were generated. In order to solve this767

task, the network must (after choosing a processing direction) predict the768

PAs which would be necessary when looking at the required object (i.e. the769

object given defined as a linguistic label by the task giver). The task succeeds770

only if the system is able to accurately locate the corners of the presented771

object and traverse the path of its edges until all 3 or 4 PAs of the particular772

object are fulfilled. As we set a fixed focus size of 30 pixels (i.e. the range of773

simulated microsaccades), this is the accuracy needed to successfully lock to774

a corner. The decision for a fixed focus area might not be the most accurate775

and valid decision; a better value might be found in the future work based on776

research in existing neuroscience literature or with more extensive parameter777

testing.778

The presented model was able to generate 35 true positives and 40 true779

negative predictions, out of a total of 80 examples. The model parsed objects780

twice if the ID did not seem to be congruent after the first trial, as there781

are two possible processing directions for each object’s edges. Only five test782

examples lead to a false negative prediction, when the model was not able783

to correctly parse and identify the presented object, even though its task784

description was congruent to the presented visual stimulus.785

There is a variety of reasons that can be the cause of errors leading to786

this misclassification: First, there is still some error for each separate trained787

network (i.e. the FM and IM), despite using a large dataset of 1750 objects.788

The recognition of a congruently requested and presented object can fail789

for two main reasons: Either the IM fails to produce PAs within the focus790

range or the FM makes an error in classifying the executed actions to be791

valid. As the results in IM training indicate, there is a remaining error of792

about half a degree on average in both azimuth and elevation within the793

IM’s predictions. As the learned and performed saccades contain a certain794

factor of learned skewness, it is non-trivial to differentiate between errors795

caused by inaccuracy (i.e. miscalculating either the needed size of action or796

the amount of skewness) or a failed action prediction (e.g. when producing797

an action fitting a triangle but not a square).798

The second possible error source, the FM’s performance, can be divided799

into its required outputs: Either it fails to correctly validate the size or the800

identity of the currently processed object. It should be noted that the output801

states are not used within this task and therefore do not influence the sys-802

tem’s overall performance. Furthermore, there is the possibility that these803

inaccuracies could be traced back to the inverse kinematics gaze controller804

module used to perform the actions in the simulator. The presented imple-805

mentation has a function to cope with its inaccuracies, but perfect accuracy806

in motor execution cannot be guaranteed. However, we did not notice this807

issue as causing the errors within our tests, as the networks’ inaccuracies808

are in general larger.809
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Yet another possible reason for the described misclassification lies in the810

empirically defined focus range, i.e. the region that resembles microsaccades811

in human vision. This region is used to scan for visual corners nearby and812

correct the performed PA.813

5.4. Task 3: Object imagination814

The results of task 3 show very good performance for imagined PAs815

within both triangles and squares. Since this task represents imagination,816

not perfectly aligned start and end points are to be expected, so long as817

the trajectory describes a recognizable shape achieved by the model in all818

iterations. The slight differences in starting and ending location are a re-819

sult of error multiplication in the feedback loop between the forward and820

inverse model, since neither is working with mathematically precise values821

for correct angles and action lengths, but with approximate guesses which822

are characteristic of natural systems. As the task is specified to be purely823

imaginative, no external (i.e. visual) correction can be introduced.824

One interesting insight that appeared during testing is the fact that825

the model will generate predictions after each single presented PA. As the826

presented objects are very simplified, these predictions tended to be correct827

in all cases before reaching the last saccade. With respect to the underlying828

theory of PAs, this is a significant aspect: Generating and updating the829

internal representation of what is processed currently (or rather, what is830

likely to be processed currently) can be a key decisive factor when choosing831

the next actions. For the presented tasks within the previous sections, these832

intermediary predictions are used in a straightforward way, by performing833

the next PA based on the highest likelihood or by checking if the pattern834

of highest activation at a given point of time still represents the searched835

object. With respect to more complex cognitive tasks based on PAs, these836

intermediary predictions could be exploited in more depth.837

In summary, the approach to PAs as the representational medium we838

chose for presented evaluations is only one possibility. Another approach839

could be to give the system more freedom for trial-and-error exploration,840

for example by testing a set of PAs and feeding back positive or negative841

outcome of a single action, similarly as presented here. However, the system842

could be re-implemented to perform (multiple) saccades with ’negative’ out-843

come (i.e. not hitting the intended target on the first trial) and performing844

further saccades from the reached point in space.845

5.5. Related neural network models for mental imagery846

Here we refer to several connectionist approaches to mental imagery.847

Chersi et al. (2013) operated with a similar concept to ours when modeling848

MI. They wanted to exploit its predictive and anticipatory powers, while849

still relying on comprehensively accurate biological aspects of brain circuits.850

Their goal was to improve their agent’s navigational skills using MI. They851
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designed a computational neural network model of mental simulation where852

the agent was a virtual rat with several modules: visual areas module, hip-853

pocampus module modelled as a self-organizing map, the ventral striatum854

module working on the method of temporal difference learning, and motor855

cortex and prefrontal cortex modules which haven’t been implemented yet.856

The MI module was modeled as a multi-layer perceptron. The whole model857

works as a reinforcement learning model. Mental imagery is used to plot858

different outcomes for the agent based on its experience. It used the same859

brain areas used in the actual action performing for imagining, and to a860

considerable success.861

Seepanomwan et al. (2013) used an iCub in their undertaking of an em-862

bodied cognitive approach to mental rotation. Their goal was to design863

successful mental rotating capabilities of their agent. They relied on theo-864

ries of motor affordance encoding, motor simulation, anticipation of conse-865

quences of actions and sensory prediction, which they tried to implement.866

Their argument is that affordances and embodied processes play an integral867

role in MI. Their model is composed of four parts: the parietal cortex, re-868

ceiving proprioceptive and visual input, the premotor cortex, which drives869

the rotation, the prefrontal cortex, formed by a self-organizing map, which870

takes outputs of other parts, and the primary motor cortex, which is a self-871

organizing map as well, encoding current bodily positions and desired or872

possible bodily positions. The model shows that using the same bodily pro-873

cesses that are used in performed actions can be successfully used in mental874

rotation.875

Gaona et al. (2014) used a ANN model to produce anticipatory behavior876

using MI. Their goal was to improve their agent’s obstacle-avoiding behav-877

ior using MI. They used a physical Pioneer 3-DX robot to associate visual878

and tactile stimuli with prediction, motivated by covert actions. A forward879

model is used for predictions, as it learns sensorimotor associations from880

visual, tactile and motor modalities, represented as vectors. Its architecture881

of a multi-layer perceptron is trained using resilient back propagation to882

associate environmental stimuli and motor responses. Mental imagery was883

created by feeding the model its output as input again, building predictive884

capabilities. The robot was capable of coping with environmental challenges885

by performing collision-free trajectories. The anticipation of environmental886

stimuli prepared an appropriate motor response beforehand.887

Di Nuovo et al. (2011) used an iCub for modeling spatial MI. Their888

goal was to build estimative capabilities of the agent through proprioceptive889

and visual information. Concretely, the model was supposed to imagine890

scoring a goal, thus improving its performance. The model consists of a891

fully connected recurrent neural network. Its input is the visual information892

of the robot’s coordinates in respect to the goal and body proprioceptives.893

The outputs are the desired coordinates and changed body proprioceptives894

(after performing the action of kicking the ball). The network is trained895
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by Back Propagation Through Time algorithm to predict its own input.896

The MI serves as a spatial position estimation, based on proprioceptive and897

visual information. By using MI in such an embodied and predictive way,898

the model displays successful results.899

All these models use the MI for predictive ways, using neural networks900

to achieve better results. However, our model differs as it uses not only901

predictive MI, but also predictive visual perception, thus going one step902

forward from focus on embodiment to focus on sensorimotor enactivism.903

5.6. Further work and extensions904

5.6.1. Perceptual actions905

Since PAs make up a major part of our conceptualization, one of the906

foremost expansions to be implemented should be to use more of the robot’s907

body. So far, PAs only account for a single eye movement. Going by the908

enactive theory, the paradigm that different actions extract different infor-909

mation from the environment should be explored further. We limited the910

amount of possible movements (i.e. degrees of freedom) of the robot to verti-911

cal and horizontal eye movements. However, like humans, the iCub platform912

is able to perform saccades by additionally moving the entire head or can913

even be supported by moving part of the remaining body, especially the up-914

per torso. Implementing a system that incorporates these additional degrees915

of freedom would drastically raise its complexity. However, we suggest that916

our implementation can be seen as a solid foundation for future work on917

more complex and ecological PAs.918

Another missing element in our implementation is the issue of stereo919

vision. We restricted the perceived visuals to be from a single eye as it920

still suffices for the range of desired tasks within the scope of this study.921

However, information received from both eyes is much richer, enabling depth922

perception (which is exactly the different kind of information you get access923

to when using different PAs). Implementing a system with stereo vision924

could significantly help with the problem of skewed saccades, as it is possible925

to extract more detailed information about the spatial alignment of an edge,926

or an object as a whole.927

Additionally, stereo vision is very likely one of the most important re-928

quirements to solve more complex cognitive tasks based on this theory.929

5.6.2. Higher level tasks based on perceptual actions930

The tasks presented in this study are fairly low-level and are a proof of931

concept. And, as we explained in the previous sections, already on this level932

a large number of assumptions and simplifications has to be agreed upon.933

However, using the system as a foundation for more complex cognitive tasks934

based on visual PAs is thinkable. These can range from tasks close to what935

has been described here, such as identifying or imagining objects in the936
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visual field and, for example, detecting the relative positions of multiple937

objects, their overlap, their relationship in size and so on.938

5.6.3. Perceptual actions and supervised learning939

Closely connected to the issue of solving higher level tasks using this940

system is the aspect of how to generate training data, or rather how train-941

ing should and can be performed within this area of research. More of our942

assumptions clearly stem from the field of developmental psychology, espe-943

cially those connected to the problem of salience and peripheral vision. One944

of the key insights we gained during the study is that there is still no clear945

definition of what should count as a “correct” PA. Our underlying assump-946

tion for training was that PAs should be as precise and efficient as possible,947

e.g. not checking multiple times for the existence of a corner when solving948

a task, even though we mostly opted for ecology over optimization. This is949

clearly reflected in the behavior of the combined model and as well as the950

evaluation procedure. From a developmental point of view, however, this951

aspect should be left open to discussion, as PAs, especially during human952

development, seem to follow not only the rules of accuracy and efficiency,953

but furthermore support functions such as (random) exploration. One of954

the most straight-forward tasks that can be implemented is based on the is-955

sue of PAs occurring between objects. An extension of the system could be956

trained to detect them separately to the identity and properties of presented957

objects.958

5.6.4. Memory module959

The main reason for adding the MM was to avoid constructing the FM960

and IM specific to the given tasks. Using a separate MM could enable the961

combined system to gain the capacity to solve more complex tasks that962

require even higher-level reasoning. For example, a thinkable task that ex-963

tends the currently existing framework could be the problem of comparing964

two visual objects, which are displayed at the same time. Additionally, these965

objects could exhibit overlapping parts and thus require more complex imag-966

inative reasoning. When relying only on the forward and inverse model to967

solve this sort of extended task, this would force the task giver to first modify968

at least one of the models (in this case, most likely the forward model would969

have to be modified in order to keep track of overlapping objects). Using970

the memory module, one can distinguish between the “pure” neural organi-971

zation into a forward and inverse model and a task specific module, which972

can re-use both networks as they are. From a neuroscience perspective, this973

resembles the ubiquitous process of re-using and distributing neural activa-974

tion patterns to form more complex forms of cognitive processing. A very975

well researched example for this phenomenon would be the scaffolding of976

the (e.g., human) visual system: Here, “fairly simple” processes such as the977

recognition of low-level patterns and structures are re-used in large amounts978
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of more complex processes that are additionally supported and guided by979

top-down processes, for example, when processing a complex object (such980

as a human) given the task to detect a certain aspect of it (such as a pencil981

in the human’s hand). This is based on the assumption that neural visual982

processing and imagination modules are not directly affected by the change983

in the complexity of a visual (or imaginative) task. The memory module in984

its current state still resembles a simple symbolic controller module. How-985

ever, in theory it should be possible to design it with a neural network and986

thereby construct a system based entirely on neural processing. It should987

be noted that, strictly speaking, the proposed separation into a forward and988

inverse model is a form of pre-defining the way the tasks are solved on its989

own.990

Within Sima’s perceptual instantiation theory, the MM can be seen as991

an approach to simulate the visuospatial long-term memory (VS-LTM) as992

well as the short-term memory. Very similarly to the theoretical construct of993

the VS-LTM, our presented memory module serves as a glue between mental994

concepts and PAs. It harbors the ability to store and retrieve knowledge for995

the recognition of a specific entity, such as required for an individual task996

within our framework. But the memory module also serves within current997

perception, enabling to identify mental concepts based on PAs and allowing998

for subsequent interpretation. Within our framework, the interpretation of999

identified mental concepts is represented implicitly, within the task solving1000

capacity of the module.1001

The MM probably holds the biggest potential not only for expansion,1002

but also for bringing the model from a one-theory to an extremely versa-1003

tile theory-testing entity. It was designed so that our model would not be1004

built specifically for certain tasks, therefore implicitly already influencing1005

the research results. However, having the memory module with all the task1006

knowledge (eerily similar to a brain as a central controller) separated from1007

the network (which could be seen analogous to the body) goes thoroughly1008

against the enactive approach, which opposes such dualism or modularism1009

(depending on how the MM is interpreted), making it a double-edged sword.1010

It means that there exists low-level cognition, such as perception, and higher1011

cognition (which would be the memory module). The separation of the two1012

as such therefore goes against the embodied and enactive approaches. We1013

feel it was a necessary compromise in our particular position, but it will be1014

further conceptualized and looked into for options that would be compat-1015

ible with our paradigm. One of the most straight-forward approaches to1016

this problem could be to train and test the model as a whole, with all parts1017

being a type of artificial neural network. As described before, the memory1018

module used for our tests is only a prototype that can be implemented as1019

a feedforward (or recurrent, for more complex tasks) network. In theory,1020

by connecting the memory module to all input and output units of both1021

forward and inverse model, the system could be trained in a single step.1022
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This is in contrast to our highly modular approach to show the very basic1023

functionality of visuospatial MI in robotic vision. One of the most inter-1024

esting possibilities of such an integrated approach is the ability of on-line1025

learning, where one part of the network uses the predictions of another one1026

and provides correctional feedback and vice versa.1027

5.6.5. Inherent properties1028

Some properties inherent to the module should be discussed as well,1029

especially from the ecological view. Most of the inherent properties not being1030

learned or being presupposed was not only due to the speculative nature of1031

the phenomenon but also because of our focus on the parts necessary for our1032

research and specific tasks. One of such inherent properties is the identity1033

of the object that the model automatically possesses. This would definitely1034

have to be reassessed in the potential expansions, especially when more1035

objects are to be presented in space and time, meaning that the model would1036

have to learn how to differentiate as well as to know which object was already1037

presented to it. Another thing are the constraints in the iCub’s visual field.1038

These were empirically and pragmatically set so as to avoid extreme angles,1039

where its successful performance was not guaranteed. Another, probably1040

unavoidable property at this stage, is the categorical information about the1041

scene. Getting the shape information at the time of object creation might1042

be similar to some sort of external linguistic signal, but this still seems1043

oversimplified from the developmental point of view.1044

5.6.6. Environment complexity1045

Tackling the task of object recognition with PAs in the real world (as op-1046

posed to the presented tasks within the simplified virtual environment) will1047

bring significant additional complexity to the suggested theory and imple-1048

mentation. Most importantly, extracting salient information (or structured1049

information at all) becomes a highly ambiguous task. It is an open question,1050

how and what exactly we extract from our environment, and how we orient1051

in the enormous amounts of salient visual inputs. Combining the proposed1052

implementation of attention-based and narrow visual focus with peripheral1053

vision or even approaches from computer vision could help to tackle this1054

problem.1055

5.6.7. Peripheral vision1056

As can be discerned from the constructive powers of visual perception,1057

peripheral vision is a very difficult topic to tackle as it is hard to say how1058

much of it is constructed and how much of this construction is bottom-up as1059

opposed to top-down. It seems that some information must come through as1060

the salience-based vision reacts to stimuli in the peripheral vision. The role1061

of saccades in this is uncertain as well, but it seems that it must be connected1062

to it. One of the possible mechanisms might be occasional saccades to1063
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periphery to keep track of significant changes and to pick up on salience.1064

These saccades, however, would not be salience-based. In any case, different1065

approaches to research peripheral vision seem to be perfect for our expanded1066

model which could work as a theory-tester. It is definitely a fascinating1067

research path to be undertaken, and one that might be a potential future1068

path for our model.1069

6. Conclusion1070

We presented a simplified simulation of visuospatial mental imagery1071

based on the Perceptual Instantiation Theory (PIT), as presented by Sima,1072

through the larger context of the enactive approach to visual perception,1073

and with added constructing saccadic visual phenomena as a novel inclu-1074

sion, especially in relation to robotic vision. The theory is built around the1075

core assumption that in humans, PAs are used within perception of the en-1076

vironment in order to extract information and can be “re-used” in MI later1077

on. Our model proves that it is possible to ground simple mental concepts,1078

namely triangles and squares, only on PAs expressed by eye movements.1079

For this, we propose a system consisting of two artificial neural networks,1080

containing an inverse model, which predicts the coordinates change for a1081

single PA based on categorical information about the imagined object as1082

well as information about the current proprioceptive state, and a forward1083

model, which cares about the internal representation of the current state and1084

furthermore enables object recognition by predicting categorical information1085

based on previously performed PAs. The presented inverse and forward1086

models are connected by a memory module. This memory module was1087

implemented as a simple symbolics controller, which mediates task-specific1088

information to the two neural networks and initiates object recognition and1089

imagination.1090

The presented artificial neural system works in real-time within a sim-1091

ulated iCub cognitive humanoid robotic platform, using only its eye move-1092

ments as possible degrees of freedom for PAs. This setup enables training1093

and evaluation with PAs, extracted directly from the eye movements per-1094

formed by the robot after being presented with objects of variable shape,1095

size and location. In its current state, the system is able to recognize pre-1096

sented visual objects of two shapes (triangle and square) for continuous sizes1097

and locations within the field of view.1098

The combined model proved to be efficient in evaluating the congruency1099

of presented objects and given object identity labels. Furthermore, the sys-1100

tem was successful in imagining valid trajectories of the discussed object1101

types. Overall, only minor inaccuracies appeared within object imagina-1102

tion, which can be traced back on the high variability within possible ob-1103

ject configurations within training and testing and the inherent continuous1104

approximation properties of neural networks. Furthermore, the presented1105
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system showed the ability to generalize upon the skewness of objects when1106

they were presented at the border areas of the robot’s field of view.1107

The system should be seen as a proof-of concept implementation of the1108

PIT, complemented with the larger context of enactive approaches, research-1109

backed task picks and a novel inclusion of the saccadic phenomena in relation1110

to visual construction. It could serve as a platform to test more extensive1111

simulations based on these. One possible starting point for this could be the1112

presented symbolic memory module, which could be replaced by an artificial1113

neural network, making the entire system connectionist. We suggest that1114

such an extended version of the presented system would provide the possi-1115

bility to significantly scale up the complexity of solvable tasks and testable1116

research hypotheses.1117
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Appendix1229

In Figures 18 to 21 we present a step-by-step processing of the system in1230

the task 3 with the model imagining a large square (object ID = [0,1], size1231

= 0.967), starting in B position ([0,1,0,0]) and going in clockwise direction1232

38



(direction = 1). The system was initiated in a random start state [0.133,1233

−0.744]. Note that the values of the system are in unit activations [−1, 1],1234

while values on the graphs are in iCub’s world coordinates.1235

Figure 18: Left: The start state and the state after the first step, connected with the
starting perceptual action. Right: Output of the system in step 1.

Figure 19: Left: The states up until and including the second step as well as the perceptual
actions connecting them. Right: Output of the system in step 2.
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Figure 20: Left: The states up until and including the third step as well as the perceptual
actions connecting them. Right: Output of the system in step 3.

Figure 21: Left: The states up until and including the last step as well as the perceptual
actions connecting them. Right: Output of the system in step 4. As the shape is now
complete (position is the same as the start position), the task is now finished.
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